Computer science is the scientific study of computing devices, the software that drives them, and the computational tasks they are capable of performing. Computer scientists study both hardware and software; as with all sciences, each of these possesses both theoretical and applied components. Computing theory shares knowledge and techniques with the fields of mathematics, physics, engineering, philosophy, psychology, and linguistics. Its applications span the range of human endeavors: the physical life and social sciences; the literary, visual, and performing arts; law; government; recreation; and virtually every sector of the commercial world. Thus, computer science is by its very nature an interdisciplinary subject that offers both a solid unifying foundation for a liberal arts and sciences education, and valuable career skills.

The curriculum consists of a rigorous course of study in computer science and mathematics and provides the student with a thorough grounding in programming, fundamentals of computer organization, data structures, and algorithm design. It is designed to prepare students for careers in the computer industry and graduate work in computer science.

All courses submitted toward either major or minor requirements in the Computer Science Department must be taken for a letter grade (A-F). This includes electives in CS and all other courses taken to satisfy the major. This does not apply to courses that are challenged. Only those classes for which the student has received a C- or better may be used to satisfy prerequisite requirements. An instructor may require the student to provide evidence of having met prerequisite requirements.

Bachelor of Science in Computer Science

(See page 92 for a sample four-year program.)

Degree Requirements for a Bachelor of Science in Computer Science

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Education</td>
<td>44</td>
</tr>
<tr>
<td>(50 units, 6 covered by major requirements)</td>
<td></td>
</tr>
<tr>
<td>Computer Science Core</td>
<td>49</td>
</tr>
<tr>
<td>Computer Science Electives</td>
<td>9</td>
</tr>
<tr>
<td>Computer Science Capstone Requirement</td>
<td>3</td>
</tr>
<tr>
<td>Required Supporting Courses</td>
<td>10 - 12</td>
</tr>
<tr>
<td>General Electives</td>
<td>3-5</td>
</tr>
<tr>
<td>Total units needed for graduation:</td>
<td>120</td>
</tr>
</tbody>
</table>

Major Core Requirements

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 115</td>
<td>Programming I (GE Area B3)</td>
<td>4</td>
</tr>
<tr>
<td>CS 210</td>
<td>Introduction to Unix</td>
<td>1</td>
</tr>
<tr>
<td>CS 215</td>
<td>Programming II</td>
<td>4</td>
</tr>
<tr>
<td>CS 242</td>
<td>Discrete Structures for Computer Science</td>
<td>4</td>
</tr>
<tr>
<td>CS 252</td>
<td>Introduction to Computer Organization</td>
<td>4</td>
</tr>
<tr>
<td>CS 315</td>
<td>Data Structures</td>
<td>4</td>
</tr>
<tr>
<td>CS 351</td>
<td>Computer Architecture</td>
<td>4</td>
</tr>
<tr>
<td>CS 355</td>
<td>Database Management Systems Design</td>
<td>4</td>
</tr>
<tr>
<td>CS 370</td>
<td>Software Design and Development</td>
<td>4</td>
</tr>
<tr>
<td>CS 415</td>
<td>Algorithm Analysis</td>
<td>4</td>
</tr>
<tr>
<td>CS 450</td>
<td>Operating Systems</td>
<td>4</td>
</tr>
<tr>
<td>CS 454</td>
<td>Theory of Computation</td>
<td>4</td>
</tr>
<tr>
<td>CS 460</td>
<td>Programming Languages</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total units in major core</td>
<td>49</td>
</tr>
</tbody>
</table>

Computer Science Electives

Choose 9 units of upper-division CS electives (see list below). No more than 3 units can be satisfied by a combination of CS 349, 390, 495, and 497.

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 330</td>
<td>Introduction to Game Programming</td>
<td>3</td>
</tr>
<tr>
<td>CS 340</td>
<td>Computer Security and Malware</td>
<td>3</td>
</tr>
<tr>
<td>CS 349</td>
<td>Problem Solving in a Team Environment</td>
<td>1</td>
</tr>
<tr>
<td>CS 360</td>
<td>Object-Oriented Programming</td>
<td>3</td>
</tr>
<tr>
<td>CS 365</td>
<td>Computer Networking and the Internet</td>
<td>3</td>
</tr>
<tr>
<td>CS 375</td>
<td>Computer Graphics</td>
<td>3</td>
</tr>
<tr>
<td>CS 385</td>
<td>Selected Topics</td>
<td>1-4*</td>
</tr>
<tr>
<td>CS 386</td>
<td>Selected Topics with Lab</td>
<td>3</td>
</tr>
<tr>
<td>CS 390</td>
<td>Computer Science Colloquium</td>
<td>1</td>
</tr>
<tr>
<td>CS 425</td>
<td>Selected Topics with Lab</td>
<td>3</td>
</tr>
<tr>
<td>CS 452</td>
<td>Compiler Design and Construction</td>
<td>3</td>
</tr>
<tr>
<td>CS 465</td>
<td>Data Communications</td>
<td>3</td>
</tr>
<tr>
<td>CS 480</td>
<td>Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>CS 495</td>
<td>Special Studies</td>
<td>1-4</td>
</tr>
<tr>
<td>CS 497</td>
<td>Internship</td>
<td>2</td>
</tr>
</tbody>
</table>
Selected topics courses include Bioinformatics, Data Compression, Parallel Computing, Wireless Networks, Mobile Application Development, and other current topics in computer science.

Total units in major electives 9

CS Capstone Requirement

One of the following courses:
CS 470 Advanced Software Design Project 3
CS 496 Senior Research Project 3

Total units in capstone requirement 3

Required Supporting Courses

MATH 161 Differential and Integral Calculus I (GE Area B4) or 4
MATH 161X Differential and Integral Calculus I Extended (GE Area B4) 6

Two additional courses from the following: 6-8
MATH 165 Elementary Statistics 4
MATH 165X Elementary Applied Statistics Extended 6
MATH 211 Differential and Integral Calculus II 4
MATH 222 Elementary Applied Linear Algebra 3
MATH 241 Differential Equations with Linear Algebra 4
MATH 306 Number Theory 4
MATH 316 Graph Theory and Combinatorics 4
MATH 352 Numerical Analysis 4
MATH 416 Graph Theory and Combinatorics 4
MATH 430 Linear Systems Theory 3
MATH 470 Mathematical Models 4
PHYS 214 Introduction to Physics II 4
(Prerequisite PHYS 114, GE Area B1)

Or other by arrangement with the CS Department

Total units in other required courses 10-12
Total units in the major 71-73

Minor in Computer Science

Students electing this minor will be prepared for careers in business application programming, scientific application programming, computer equipment sales, as field engineers, and as data processing managers among the myriad job opportunities associated with the computer field. Approval of the minor curriculum should be obtained by the junior year at the latest in order that the minor may be properly planned.

Minor Core Requirements

CS 115 Programming I 4
CS 210 Introduction to UNIX 1
CS 215 Programming II 4

Total units in minor core 9

Minor Electives

Choose 11 units of CS major courses (listed under Major Core Requirements and Computer Science Electives) of which 6 units must be upper-division. No more than 2 units in any combination of CS

Sample Four-Year Plan for Bachelor of Science in Computer Science

<table>
<thead>
<tr>
<th>FRESHMAN YEAR: 32 Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester (16 Units)</td>
</tr>
<tr>
<td>CS 115 (4)</td>
</tr>
<tr>
<td>MATH 161(4) *</td>
</tr>
<tr>
<td>GE (8)</td>
</tr>
<tr>
<td>Spring Semester (16 Units)</td>
</tr>
<tr>
<td>CS 210 (1)</td>
</tr>
<tr>
<td>CS 215 (4)</td>
</tr>
<tr>
<td>CS 242 (4)</td>
</tr>
<tr>
<td>GE (7)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOPHOMORE YEAR: 29-31 Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester (15-16 Units)</td>
</tr>
<tr>
<td>CS 252 (4)</td>
</tr>
<tr>
<td>CS 315 (4)</td>
</tr>
<tr>
<td>Supporting Course in MATH/PHYS (3/4)</td>
</tr>
<tr>
<td>Supporting Course in MATH/PHYS (3/4)</td>
</tr>
<tr>
<td>CS Elective (3)</td>
</tr>
<tr>
<td>Spring Semester (14-15 Units)</td>
</tr>
<tr>
<td>CS Elective (3)</td>
</tr>
<tr>
<td>GE (4)</td>
</tr>
<tr>
<td>GE or University Elective (4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNIOR YEAR: 30 Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester (15 Units)</td>
</tr>
<tr>
<td>CS 351 (4)</td>
</tr>
<tr>
<td>CS 460 (4)</td>
</tr>
<tr>
<td>CS Elective (3)</td>
</tr>
<tr>
<td>Spring Semester (15 Units)</td>
</tr>
<tr>
<td>CS Elective (3)</td>
</tr>
<tr>
<td>GE (4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SENIOR YEAR: 29 Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester (15 Units)</td>
</tr>
<tr>
<td>CS 450 (4)</td>
</tr>
<tr>
<td>CS 454 (4)</td>
</tr>
<tr>
<td>CS Elective (3)</td>
</tr>
<tr>
<td>Spring Semester (14 Units)</td>
</tr>
<tr>
<td>CS Elective (3)</td>
</tr>
<tr>
<td>GE (4)</td>
</tr>
<tr>
<td>GE or University Elective (11)</td>
</tr>
</tbody>
</table>

| TOTAL UNITS: 120 |

* Students who are GE Math eligible but are not ready to take MATH 161 should consider taking MATH 161X (6 units)